COMPARISON OF COMMON MINERAL PROCESSING FROTHERS

<table>
<thead>
<tr>
<th>Relative Performance</th>
<th>Chemical Structure</th>
<th>Maximum Foam Volume</th>
<th>Foam Half-Life</th>
<th>Froth Comprehensiv-e Index</th>
<th>Foam Rise Velocity</th>
<th>Foam Duration</th>
<th>Froth Surface Tension</th>
</tr>
</thead>
<tbody>
<tr>
<td>From 1 (Low) to 5 (High) Stars based on recovery performance</td>
<td>Denotes chemical functionality and compatibility</td>
<td>Larger volume indicates stronger foaming ability</td>
<td>Longer half life indicates better foam stability</td>
<td>Higher index indicates better overall flotation performance</td>
<td>Larger velocity means lower foam viscosity</td>
<td>Form duration with ongoing aeration @ 0.05 g/L</td>
<td>Indicates ability of the frother to break surface tension of water</td>
</tr>
<tr>
<td>Aliphatic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl Isobutyl Carbinol (MIBC)</td>
<td></td>
<td>96.75 mL</td>
<td>4.0 s</td>
<td>4.84</td>
<td>0.64 cm/s</td>
<td>80 s</td>
<td>70.12 mN/m</td>
</tr>
<tr>
<td>2-Ethyl Hexanol</td>
<td></td>
<td>192.43 mL</td>
<td>7.0 s</td>
<td>16.84</td>
<td>0.66 cm/s</td>
<td>95 s</td>
<td>64.52 mN/m</td>
</tr>
<tr>
<td>BK 201</td>
<td></td>
<td>230.37 mL</td>
<td>8.5 s</td>
<td>24.48</td>
<td>0.63 cm/s</td>
<td>95 s</td>
<td>59.84 mN/m</td>
</tr>
<tr>
<td>Cyclic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pine Oil 90</td>
<td></td>
<td>102.12 mL</td>
<td>6.0 s</td>
<td>7.66</td>
<td>0.48 cm/s</td>
<td>95 s</td>
<td>62.12 mN/m</td>
</tr>
<tr>
<td>Terpenic Oil #2</td>
<td></td>
<td>152.65 mL</td>
<td>6.5 s</td>
<td>12.40</td>
<td>0.47 cm/s</td>
<td>95 s</td>
<td>53.93 mN/m</td>
</tr>
<tr>
<td>Polyglycols</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FloMin® 650</td>
<td></td>
<td>67.72 mL</td>
<td>4.5 s</td>
<td>3.81</td>
<td>0.31 cm/s</td>
<td>67 s</td>
<td>51.35 mN/m</td>
</tr>
<tr>
<td>FloMin® 660</td>
<td></td>
<td>80.63 mL</td>
<td>5.5 s</td>
<td>5.54</td>
<td>0.24 cm/s</td>
<td>67 s</td>
<td>46.16 mN/m</td>
</tr>
<tr>
<td>50-50 Blend (MIBC & F650)</td>
<td></td>
<td>102.12 mL</td>
<td>6.0 s</td>
<td>7.66</td>
<td>0.48 cm/s</td>
<td>95 s</td>
<td>59.84 mN/m</td>
</tr>
</tbody>
</table>

DATA SOURCE
From Frother Performance Analysis by Central South University in Changsha, China (March 2012) – Commissioned by Celanese

©2014 Celanese Corporation. FloMin® 650 and 660 are registered trademarks of SNF FloMin. BK 201 is a product of Beijing General Research Institute of Mining & Metallurgy.

To learn more about Celanese frother solutions, visit us at Celanese.com.

To the best of our knowledge, the information contained herein is accurate. To the extent permitted by applicable law, all warranties and/or representations, express or implied, as to the accuracy of the information are disclaimed, and neither Celanese nor any of its affiliates assumes any liability whatsoever for the accuracy or completeness of the information contained herein. Final determination of suitability of any material and whether there is any infringement of patents is the sole responsibility of the user. All chemicals may present unknown health hazards and should be used with caution.
COMPARISON OF COMMON MINERAL PROCESSING FROTHERS

Graphical Comparison of Frother Characteristics (Versus Frother Concentration in g/L)

- **Maximum Foam Volume (mL)**
- **Foam Half-Life (s)**
- **Froth Comprehensive Index (FCI)**
- **Mean Foam Rise Velocity (cm/s)**
- **Froth Surface Tension (mN/m)**

- **MIBC**
- **2-Ethyl Hexanol**
- **BK 201**
- **Pine Oil 90**
- **Terpenic Oil #2**
- **FloMin® 650**
- **FloMin® 660**
- **50-50 Blend (MIBC/F650)**

Visual Comparison of Foam Uniformity

- **Methyl Isobutyl Carbinol (MIBC)**
- **2-Ethyl Hexanol**
- **BK 201**
- **Pine Oil 90**
- **Terpenic Oil #2**
- **FloMin® 650**
- **FloMin® 660**
- **50-50 Blend (MIBC/F650)**

DATA SOURCE
From Frother Performance Analysis by Central South University in Changsha, China (March 2012) – Commissioned by Celanese

©2014 Celanese Corporation. FloMin® 650 and 660 are registered trademarks of SNF FloMin. BK 201 is a product of Beijing General Research Institute of Mining & Metallurgy.

To learn more about Celanese frother solutions, visit us at Celanese.com.

To the best of our knowledge, the information contained herein is accurate. To the extent permitted by applicable law, all warranties and/or representations, express or implied, as to the accuracy of the information are disclaimed, and neither Celanese nor any of its affiliates assumes any liability whatsoever for the accuracy or completeness of the information contained herein. Final determination of suitability of any material and whether there is any infringement of patents is the sole responsibility of the user. All chemicals may present unknown health hazards and should be used with caution.